网站首页  汉语字词  英语词汇  考试资料  写作素材  旧版资料

请输入您要查询的范文:

 

标题 高考数学必考知识点总结
范文
    很多学生在高考复习数学知识时,因为之前没有做过系统的总结,导致复习时整体效率不高。下面小编为大家带来高考数学必考知识点总结,希望对您有所帮助!
    
    高考数学必考知识点总结
    直线、平面、简单多面体
    1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算
    2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线.
    3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.
    4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.
    如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),
    如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心.
    5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥三棱柱平行六面体
    6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.
    正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.
    7.球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.
    高考数学备考知识点
    任一x=A,x=B,记做AB
    AB,BAA=B
    AB={x|x=A,且x=B}
    AB={x|x=A,或x=B}
    Card(AB)=card(A)+card(B)—card(AB)
    (1)命题
    原命题若p则q
    逆命题若q则p
    否命题若p则q
    逆否命题若q,则p
    (2)AB,A是B成立的充分条件
    BA,A是B成立的必要条件
    AB,A是B成立的充要条件
    1、集合元素具有
    ①确定性;
    ②互异性;
    ③无序性
    2、集合表示方法
    ①列举法;
    ②描述法;
    ③韦恩图;
    ④数轴法
    (3)集合的运算
    ①A∩(B∪C)=(A∩B)∪(A∩C)
    ②Cu(A∩B)=CuA∪CuB
    Cu(A∪B)=CuA∩CuB
    (4)集合的性质
    n元集合的字集数:2n
    真子集数:2n—1;
    非空真子集数:2n—2
    高考数学重要知识点
    表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式
    公式运用
    可用于某些分母含有根号的分式:
    1/(3-4倍根号2)化简:
    1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23
    [解方程]
    x^2-y^2=1991
    [思路分析]
    利用平方差公式求解
    [解题过程]
    x^2-y^2=1991
    (x+y)(x-y)=1991
    因为1991可以分成1×1991,11×181
    所以如果x+y=1991,x-y=1,解得x=996,y=995
    如果x+y=181,x-y=11,x=96,y=85同时也可以是负数
    所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995
    或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85
    有时应注意加减的过程。
    高考数学复习知识点
    直线、平面、简单多面体
    1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算
    2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线.
    3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.
    4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.
    如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),
    如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心.
    5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥三棱柱平行六面体
    6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.
    正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.
    7.球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.
    
随便看

 

在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。

 

Copyright © 2002-2024 cuapp.net All Rights Reserved
更新时间:2025/5/17 2:42:11