网站首页  汉语字词  英语词汇  考试资料  写作素材  旧版资料

请输入您要查询的范文:

 

标题 高三数学必修四知识点整理
范文
    不必后悔走过的足迹,只要努力过,就无需在意是好,还是坏,不必彷徨明日的风景,只要坚持过,就无需害怕前景是明,还是暗。庆幸,走过高考,成就自己。下面就是小编给大家带来的高三数学必修四知识点整理,希望大家喜欢!
    高三数学必修四知识点整理【一】
    两个复数相等的定义:
    如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di
    a=c,b=d。特殊地,a,b∈R时,a+bi=0
    a=0,b=0.
    复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。
    复数相等特别提醒:
    一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。
    解复数相等问题的方法步骤:
    (1)把给的复数化成复数的标准形式;
    (2)根据复数相等的充要条件解之。
    高三数学必修四知识点整理【二】
    复数的概念:
    形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。
    复数的表示:
    复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。
    复数的几何意义:
    (1)复平面、实轴、虚轴:
    点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数
    (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即
    这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。
    这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。
    复数的模:
    复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=
    虚数单位i:
    (1)它的平方等于-1,即i2=-1;
    (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立
    (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。
    (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
    复数模的性质:
    复数与实数、虚数、纯虚数及0的关系:
    对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。
    高三数学必修四知识点整理
随便看

 

在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。

 

Copyright © 2002-2024 cuapp.net All Rights Reserved
更新时间:2025/5/20 5:38:12