标题 | 高二数学书下册复习必记知识点 |
范文 | 爱迪生曾经说过:“天才等于百分之九十九的汗水加百分之一的灵感。”他们之所以可以称之为天才,是应为他们有正确的学习方法。以下是小编给大家整理的高二数学书下册复习必记知识点,希望能帮助到你! 高二数学书下册复习必记知识点1 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径. 2、圆的方程 (1)标准方程,圆心,半径为r; (2)一般方程 当时,方程表示圆,此时圆心为,半径为 当时,表示一个点;当时,方程不表示任何图形. (3)求圆方程的方法: 一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a,b,r;若利用一般方程,需要求出D,E,F; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置. 3、高中数学必修二知识点总结:直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况: (1)设直线,圆,圆心到l的距离为,则有;; (2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】 (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定. 设圆, 两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定. 当时两圆外离,此时有公切线四条; 当时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当时,两圆内切,连心线经过切点,只有一条公切线; 当时,两圆内含;当时,为同心圆. 注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 5、空间点、直线、平面的位置关系 公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内. 应用:判断直线是否在平面内 用符号语言表示公理1: 公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 符号:平面α和β相交,交线是a,记作α∩β=a. 符号语言: 公理2的作用: 它是判定两个平面相交的方法. 它说明两个平面的交线与两个平面公共点之间的关系:交线公共点. 它可以判断点在直线上,即证若干个点共线的重要依据. 公理3:经过不在同一条直线上的三点,有且只有一个平面. 推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面. 公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据 公理4:平行于同一条直线的两条直线互相平行 高二数学书下册复习必记知识点2 直线与圆: 1、直线的倾斜角的范围是 在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0; 2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα. 过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。 3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为, ⑵斜截式:直线在轴上的截距为和斜率,则直线方程为 4、直线与直线的位置关系: (1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=0 5、点到直线的距离公式; 两条平行线与的距离是 6、圆的标准方程:.⑵圆的一般方程: 注意能将标准方程化为一般方程 7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线. 8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交 9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长 高二数学书下册复习必记知识点3 极值的定义: (1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x) (2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。 极值的性质: (1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是或最小,并不意味着它在函数的整个的定义域内或最小; (2)函数的极值不是的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个; (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值; (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得值、最小值的点可能在区间的内部,也可能在区间的端点。 求函数f(x)的极值的步骤: (1)确定函数的定义区间,求导数f′(x); (2)求方程f′(x)=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。 |
随便看 |
|
在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。