标题 | 高二数学全省统考的知识点 |
范文 | 在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识,这样才能有所进步。以下是小编给大家整理的高二数学全省统考的知识点,希望能助你一臂之力! 高二数学全省统考的知识点1 两个复数相等的定义: 如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di a=c,b=d。特殊地,a,b∈R时,a+bi=0 a=0,b=0. 复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。 复数相等特别提醒: 一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。 解复数相等问题的方法步骤: (1)把给的复数化成复数的标准形式; (2)根据复数相等的充要条件解之。 高二数学全省统考的知识点2 形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数图像性质: 反比例函数的图像为双曲线。 由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。 如图,上面给出了k分别为正和负(2和-2)时的函数图像。 当K>0时,反比例函数图像经过一,三象限,是减函数 当K<0时,反比例函数图像经过二,四象限,是增函数 反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。 知识点: 1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。 2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移) 高二数学全省统考的知识点3 1.等差数列通项公式 an=a1+(n-1)d n=1时a1=S1 n≥2时an=Sn-Sn-1 an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b 2.等差中项 由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。 有关系:A=(a+b)÷2 3.前n项和 倒序相加法推导前n项和公式: Sn=a1+a2+a3+·····+an =a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]① Sn=an+an-1+an-2+······+a1 =an+(an-d)+(an-2d)+······+[an-(n-1)d]② 由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an) ∴Sn=n(a1+an)÷2 等差数列的前n项和等于首末两项的和与项数乘积的一半: Sn=n(a1+an)÷2=na1+n(n-1)d÷2 Sn=dn2÷2+n(a1-d÷2) 亦可得 a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n an=2sn÷n-a1 有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1 4.等差数列性质 一、任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式。 二、从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_ 三、若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq 四、对任意的k∈N_,有 Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。 |
随便看 |
|
在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。