网站首页  汉语字词  英语词汇  考试资料  写作素材  旧版资料

请输入您要查询的范文:

 

标题 七年级上册数学的知识点
范文
    从这个意义上,数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题的。下面小编为大家带来七年级上册数学的知识点,希望对您有所帮助!
    
    七年级上册数学的知识点
    代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。(分母中含有字母有除法运算的,那么式子叫做分式)
    1、单项式:数或字母的积(如5n),单个的数或字母也是单项式。
    (1)单项式的系数:单项式中的数字因数及性质符号叫做单项式的'系数。(如果一个单项式,只含有数字因数,系数是它本身,次数是0)。
    (2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)。
    2、多项式
    (1)概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。
    (2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
    (3)多项式的排列:
    把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
    在做多项式的排列的题时注意:
    (1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符
    看作是这一项的一部分,一起移动。
    (2)有两个或两个以上字母的多项式,排列时,要注意:
    a、先确认按照哪个字母的指数来排列。
    b、确定按这个字母降幂排列,还是升幂排列。
    3、整式:单项式和多项式统称为整式。
    4、列代数式的几个注意事项
    (1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写;
    (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;
    (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
    (4)带分数与字母相乘时,要把带分数改成假分数形式;
    (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成3/a的形式;
    (6)a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a 。
    七年级上册数学基础知识点
    平方根:
    ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
    ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
    ③一个正数有2个平方根/0的平方根为0/负数没有平方根。
    ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
    立方根:
    ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
    ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
    ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
    实数:
    ①实数分有理数和无理数。
    ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
    ③每一个实数都可以在数轴上的一个点来表示。
    七年级上册数学知识点总结
    第一章 有理数
    1.1正数和负数
    ①把0以外的数分为正数和负数。0是正数与负数的分界。
    ②负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数
    1.2有理数
    1.2.1有理数
    ①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
    ②所有正整数组成正整数集合,所有负整数组成负整数集合。正整数,0,负整数统称整数。
    1.2.2数轴
    ①具有原点,正方向,单位长度的直线叫数轴。
    1.2.3相反数
    ①只有符号不同的数叫相反数。
    ②0的相反数是0 正数的相反数是负数 负数的相反数是正数
    1.2.4绝对值
    ①绝对值 |a|
    ②性质:正数的绝对值是它的本身
    负数的绝对值的它的相反数
    0的绝对值的0
    1.2.5数的大小比较
    ①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
    ②正数大于0,0大于负数,正数大于负数。两个负数,绝对值大的反而小。
    1.3有理数的加减法
    1.3.1有理数的加法
    ①同号两数相加,取相同的符号,并把绝对值相加。
    ②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
    ③一个数同0相加,仍得这个数。
    ④加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
    ⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=(a+c)+b
    1.3.2有理数的减法
    ①减去一个数,等于加这个数的相反数。a-b=a+(-b)
    1.4有理数的乘除法
    1.4.1有理数的乘法
    ①两数相乘,同号得正,异号的负,并把绝对值相乘。
    ②任何数同0相乘,都得0。
    ③乘积是1的两个数互为倒数。
    ④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。
    ⑤乘法交换律:两个数相乘,交换因数的位置,积相等。ab=ba
    ⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=(ac)b
    ⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac
    1.4.2有理数的除法
    ①除以一个不等0的数,等于乘以这个数的倒数。
    ②两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0
    ③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
    ④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。
    1.5有理数的乘方
    1.5.1乘方
    ①求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a叫做底数,n 叫做指数。
    ②负数的奇次幂是负数,负数的偶次幂的正数。
    ③正数的任何次幂都是正数,0的任何正整数次幂都是0。
    ④做有理数的混合运算时,应注意以下运算顺序:
    1.先乘方,再乘除,最后加减;
    2.同级运算,从左到右进行;
    3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
    1.5.2科学记数法。
    ①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
    1.5.3近似数
    ①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。
    ②近似数与准确数的接近程度,可以用精确度表示。
    ③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。
    第二章 整式的加减
    2.1整式
    ①单项式:表示数或字母积的式子
    ②单项式的系数:单项式中的数字因数
    ③单项式的次数:一个单项式中,所有字母的指数和
    ④几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。
    ⑤多项式里次数最高项的次数,叫做这个多项式的次数。
    ⑥单项式与多项式统称整式。
    2.2 整式的加减
    ①同类项:所含字母相同,而且相同字母的次数相同的单项式。
    ②把多项式中的同类项合并成一项,叫做合并同类项。
    ③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
    ④如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
    ⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
    ⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
    第三章 一元一次方程
    3.1从算式到方程
    3.1.1一元一次方程
    ①方程:含有未知数的等式
    ②一元一次方程:只含有一个未知数,而且未知数的次数是1的方程。
    ③方程的解:使方程中等号左右两边相等的未知数的值
    ④求方程解的过程叫做解方程。
    ⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
    3.1.2等式的性质
    ①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
    ②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
    3.2解一元一次方程(—)合并同类项与移项
    ①把等式一边的某项变号后移到另一边,叫做移项。
    3.3解一元一次方程(二) 去括号与去分母
    ①一般步骤:1.去分母
    2.去括号
    3.移项
    4.合并同类项
    5.系数化为一
    3.4实际问题与一元一次方程
    利用方程不仅能求具体数值,而且可以进行推理判断。
    第四章 图形认识初步
    4.1多姿多彩的图形
    4.1.1几何图形
    ①把实物中抽象出的各种图形统称为几何图形。
    ②几何图形的各部分不都在同一平面内,是立体图形。
    ③有些几何图形的各部分都在同一平面内,它们是平面图形。
    ④常常用从不同方向看到的平面图形来表示立体图形。(主视图,俯视图,左视图)。
    ⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
    4.1.2点,线,面,体
    ①几何体也简称体。
    ②包围着体的是面。面有平的面和曲的面两种。
    ③面和面相交的地方形成线。(线有直线和曲线)
    ④线和线相交的地方是点。(点无大小之分)
    ⑤点动成线 ,线动成面,面动成体。
    ⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。
    ⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。
    ⑧线段的比较:1.目测法 2.叠合法 3.度量法
    4.2 直线,射线,线
    ①经过两点有一条直线,并且只有一条直线。
    ②两点确定一条直线。
    ③当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。
    ④射线和线段都是直线的一部分。
    ⑤把线段分成相等的两部分的点叫做中点。
    ⑥两点的所有连线中,线段最短。(两点之间,线段最短)
    ⑦连接两点间的线段的长度,叫做这两点的距离。
    4.3 角
    4.3.1角
    ①角也是一种基本的几何图形。
    ②有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。角可以看作由一条射线绕着它的端点旋转而形成的图形。
    ③把一个周角360等分,每一分就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
    ④角的度,分,秒是60进制的,这和计量时间的时,分,秒是一样的。
    ⑤以度,分,秒为单位的角的度量制,叫做角度制。
    4.3.2角的比较与运算
    ①从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
    4.3.3余角和补角
    ①两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角。
    ②两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。
    ③等角的补角相等。
    ④等角的余角相等。
    
随便看

 

在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。

 

Copyright © 2002-2024 cuapp.net All Rights Reserved
更新时间:2025/5/15 13:41:44