标题 | 初一数学重要知识点归纳 |
范文 | 学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目学习方法其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。 ![]() 七年级数学基础知识点 三角形的高线: 1、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。 2、任意三角形都有三条高线,它们所在的直线相交于一点。(垂心) 3、注意等底等高知识的考试 7、相关命题: 1)三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。 2)锐角三角形中的锐角的取值范围是60≤X<90。锐角不小于60度。 3)任意一个三角形两角平分线的夹角=90+第三角的一半。 4)钝角三角形有两条高在外部。 5)全等图形的大小(面积、周长)、形状都相同。 6)面积相等的两个三角形不一定是全等图形。 7)能够完全重合的两个图形是全等图形。 8)三角形具有稳定性。 9)三条边分别对应相等的两个三角形全等。 10)三个角对应相等的两个三角形不一定全等。 11)两个等边三角形不一定全等。 12)两角及一边对应相等的两个三角形全等。 13)两边及一角对应相等的两个三角形不一定全等。 14)两边及它们的夹角对应相等的两个三角形全等。 15)两条直角边对应相等的两个直角三角形全等。 16)一条斜边和一直角边对应相等的两个三角形全等。 17)一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。 18)一角和一边对应相等的两个直角三角形不一定全等。 初一数学下册知识点总结 篇一:直线、射线、线段 (1)直线、射线、线段的表示方法 ①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB. ②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边. ③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。 (2)点与直线的位置关系: ①点经过直线,说明点在直线上; ②点不经过直线,说明点在直线外。 篇二:两点间的距离 (1)两点间的距离:连接两点间的线段的长度叫两点间的距离。 (2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。 篇三:正方体 (1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象. (2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键. (3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面. 初一数学方法技巧 1.请概括的说一下学习的方法 曰:“像做其他事一样,学习数学要研究方法。我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。 2.请谈谈超前学习的好处 曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。” 其次,够消除对新知识的“隐患”。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。 再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。 最后,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中注意力的时间并不太多。 3.请谈谈联想与总结 曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。 4.那么我们怎样预习呢? 曰:“先说说学习的目标:(1)知道知识产生的背景,弄清知识形成的过程。 (2)或早或晚的知道知识的地位和作用:(3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。 再说具体的做法:(1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。 (2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。 (3)对于例题及习题的处理见上面的(2)及下面的第五条。 |
随便看 |
|
在线学习网范文大全提供好词好句、学习总结、工作总结、演讲稿等写作素材及范文模板,是学习及工作的有利工具。