标题 | 高考数学必备三角函数公式 |
内容 | 同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ)/(1-tanα ·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ) sinα=2tan(α/2)/(1+tan2(α/2)) cosα=(1-tan2(α/2))/(1+tan2(α/2)) tanα=(2tan(α/2))/(1-tan2(α/2)) 半角的正弦、余弦和正切公式 三角函数的降幂公式 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α tan2α=2tanα/(1-tan2α) sin3α=3sinα-4sin3α cos3α=4cos3α-3cosα tan3α=(3tanα-tan3α)/(1-3tan2α) 三角函数的和差化积公式 三角函数的积化和差公式 sinα+sinβ=2sin(2/(α+β α-β))·cos(2/(α+β α-β)) sinα-sinβ=2cos(2/(α+β α-β))·sin(2/(α+β α-β)) cosα+cosβ=2cos(2/(α+β α-β))·cos(2/(α+β α-β)) cosα-cosβ=-2sin(2/(α+β α-β))·sin(2/(α+β α-β)) sinα ·cosβ=-[sin(α+β)+sin(α-β)]/2 1cosα ·sinβ=-[sin(α+β)-sin(α-β)]/2 1cosα ·cosβ=-[cos(α+β)+cos(α-β)]/2 1sinα ·sinβ=— -[cos(α+β)-cos(α-β)] 2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式) |
随便看 |
|
在线学习网考试资料包含高考、自考、专升本考试、人事考试、公务员考试、大学生村官考试、特岗教师招聘考试、事业单位招聘考试、企业人才招聘、银行招聘、教师招聘、农村信用社招聘、各类资格证书考试等各类考试资料。