高三物理期中知识点总结


    在即将来临的高考,很多学生怀着惧怕紧张的心理来面对高考,我们应该越是关键时刻,越要保持平静、乐观、自信的心态。“心静如水才铿锵”,相信自己:我永远是最棒的!以下是小编给大家整理的高三物理期中知识点总结,希望能帮助到你!
    高三物理期中知识点总结1
    1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.
    2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。
    3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量.
    路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程.
    4.速度和速率
    (1)速度:描述物体运动快慢的物理量.是矢量.
    ①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述.
    ②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.
    (2)速率:
    ①速率只有大小,没有方向,是标量.
    ②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等.
    5.运动图像
    (1)位移图像(s-t图像):
    ①图像上一点切线的斜率表示该时刻所对应速度;
    ②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动;
    ③图像与横轴交叉,表示物体从参考点的一边运动到另一边.
    (2)速度图像(v-t图像):
    ①在速度图像中,可以读出物体在任何时刻的速度;
    ②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值.
    ③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率.
    ④图线与横轴交叉,表示物体运动的速度反向.
    ⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动.
    高三物理期中知识点总结2
    1.电路的组成:电源、开关、用电器、导线。
    2.电路的三种状态:通路、断路、短路。
    3.电流有分支的是并联,电流只有一条通路的是串联。
    4.在家庭电路中,用电器都是并联的。
    5.电荷的定向移动形成电流(金属导体里自由电子定向移动的方向与电流方向相反)。
    6.电流表不能直接与电源相连,电压表在不超出其测量范围的情况下可以。
    7.电压是形成电流的原因。
    8.安全电压应低于24V。
    9.金属导体的电阻随温度的升高而增大。
    10.影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。
    11.滑动变阻器和电阻箱都是靠改变接入电路中电阻丝的长度来改变电阻的。
    12.利用欧姆定律公式要注意I、U、R三个量是对同一段导体而言的。
    13.伏安法测电阻原理:R=伏安法测电功率原理:P=UI
    14.串联电路中:电压、电功和电功率与电阻成正比
    15.并联电路中:电流、电功和电功率与电阻成反比
    16."220V100W"的灯泡比"220V40W"的灯泡电阻小,灯丝粗。
    高三物理期中知识点总结3
    一、声波的多普勒效应
    在日常生活中,我们都会有这种经验:
    当一列鸣着汽笛的火车经过某观察者时,他会发现火车汽笛的声调由高变低.为什么会发生这种现象呢?这是因为声调的高低是由声波振动频率的不同决定的,如果频率高,声调听起来就高;反之声调听起来就低.这种现象称为多普勒效应,它是用发现者克里斯蒂安多普勒(ChristianDoppler,1803-1853)的名字命名的,多普勒是奥地利物理学家和物理家.他于1842年首先发现了这种效应.为了理解这一现象,就需要考察火车以恒定速度驶近时,汽笛发出的声波在传播时的规律.其结果是声波的波长缩短,好象波被压缩了.因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好象波被拉伸了.因此,声音听起来就显得低沉.定量分析得到f1=(u+v0)/(u-vs)f,其中vs为波源相对于介质的速度,v0为观察者相对于介质的速度,f表示波源的固有频率,u表示波在静止介质中的传播速度.当观察者朝波源运动时,v0取正号;当观察者背离波源(即顺着波源)运动时,v0取负号.当波源朝观察者运动时vs前面取负号;前波源背离观察者运动时vs取正号.从上式易知,当观察者与声源相互靠近时,f1当观察者与声源相互远离时。
    二、光波的多普勒效应
    具有波动性的光也会出现这种效应,它又被称为多普勒-斐索效应.因为法国物理学家斐索(1819-1896)于1848年独立地对来自恒星的波长偏移做了解释,指出了利用这种效应测量恒星相对速度的办法.光波与声波的不同之处在于,光波频率的变化使人感觉到是颜色的变化.如果恒星远离我们而去,则光的谱线就向红光方向移动,称为红移;如果恒星朝向我们运动,光的谱线就向紫光方向移动,称为蓝移.
    三、光的多普勒效应的应用
    20世纪20年代,美国天文学家斯莱弗在研究远处的旋涡星云发出的光谱时,首先发现了光谱的红移,认识到了旋涡星云正快速远离地球而去.1929年哈勃根据光普红移总结出的哈勃定律:星系的远离速度v与距地球的距离r成正比,即v=Hr,H为哈勃常数.根据哈勃定律和后来更多天体红移的测定,人们相信宇宙在长时间内一直在膨胀,物质密度一直在变小.由此推知,宇宙结构在某一时刻前是不存在的,它只能是演化的产物.因而1948年伽莫夫(G.Gamow)和他的同事们提出大爆炸宇宙模型.20世纪60年代以来,大爆炸宇宙模型逐渐被广泛接受,以致被天文学家称为宇宙的标准模型.
    多普勒-斐索效应使人们对距地球任意远的天体的运动的研究成为可能,这只要分析一下接收到的光的频谱就行了.1868年,英国天文学家W.哈金斯用这种办法测量了天狼星的视向速度(即物体远离我们而去的速度),得出了46km/s的速度值。