证明多边形外角判定方法


    与多边形的内角相对应的是外角,多边形的外角就是将其中一条边延长并与另一条边相夹的那个角。任意凸多边形的外角和都为360°。多边形所有外角的和叫做多边形的外角和。下面小编给大家带来证明多边形外角判定方法,希望能帮助到大家!
    证明多边形外角判定方法
    证法一:
    在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.
    因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°
    所以n边形的内角和是n·180°-2×180°=(n-2)·180°.
    即n边形的内角和等于(n-2)×180°.
    证法二:
    连结多边形的任一顶点A1与其他各个顶点的线段,把n边形分成(n-2)个三角形.
    因为这(n-2)个三角形的内角和都等于(n-2)·180°
    所以n边形的内角和是(n-2)×180°.
    证法三:
    在n边形的任意一边上任取一点P,连结P点与其它各顶点的线段可以把n边形分成(n-1)个三角形,
    这(n-1)个三角形的内角和等于(n-1)·180°
    以P为公共顶点的(n-1)个角的和是180°
    所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°
    多边形外角和证明
    在多边形中每一个内角和与之相邻的外角都构成一个平角(180°),
    那么:
    n边形内角和+n边形外角和=n×180°
    又∵多边形的内角和=(n-2)×180°
    ∴.n边形外角和= n×180°-(n-2)×180°
    =360°
    由此可见:任意多边形的外角之和都为360°
    如三角形的外角和为360°、四边形的外角和也为360°,
    即n边形的外角和与它的边的条数无关。
    证明多边形外角判定定理
    1、180n是所有外角和内角的和,180°(n-2)是所有内角和,减去就是外角和。
    ∵n边形外角等于(180°-和它相邻的内角)
    ∴180°n-180°(n-2)=180°n-180°n+360°=360°
    由上式可知任意凸多边形的外角和等于360度。
    2、根据多边形的内角和公式求外角和为360
    3、n边形内角之和为(n-2)_180,设n边形的内角为∠1、∠2、∠3、...、∠n,对应的外角度数为
    180-∠1、180°-∠2、180°- 180°-∠n外角之和为
    (180-∠1)+(180°-∠2)+(180°-∠3)+...+(180°-∠n)
    =n_180°-(∠1+∠2+∠3+...+∠n)
    =n_180°-(n-2)_180°
    =360°
    证明多边形外角判定定义
    任意n边行的外角和为360度.
    n边形内角和公式是:
    内角和=180(n-2)度
    n个内角有n个外角.
    n个内角+n个外角=180n度
    所以n边行外角和=[180n-180(n-2)]=360度