高二物理期末总复习的知识点概括


    我们只要在学习过程中重视思考问题和探究问题,你的能力就会在不知不觉中得到提高,为高三复习阶段深化知识网络结构提供基础。以下是小编给大家整理的高二物理期末总复习的知识点概括,希望能助你一臂之力!
    高二物理期末总复习的知识点概括1
    1.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
    2.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
    3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
    4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}
    5.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
    6.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
    7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
    8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
    9.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)
    10.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
    11.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}
    12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
    13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
    14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
    15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
    类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
    抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
    高二物理期末总复习的知识点概括2
    1.万有引力定律:引力常量g=6.67×n?m2/kg2
    2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)
    3.万有引力定律的应用:(中心天体质量m,天体半径r,天体表面重力加速度g)
    (1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
    (2)重力=万有引力
    地面物体的重力加速度:mg=gg=g≈9.8m/s2
    高空物体的重力加速度:mg=gg=g<9.8m/s2
    4.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是的。
    由mg=mv2/r或由==7.9km/s
    5.开普勒三大定律
    6.利用万有引力定律计算天体质量
    7.通过万有引力定律和向心力公式计算环绕速度
    8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)
    高二物理期末总复习的知识点概括3
    一、质点的运动(1)------直线运动
    1)匀变速直线运动
    1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as
    3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at
    5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t
    7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2)
    2.互成角度力的合成:
    F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2
    3.合力大小范围:|F1-F2|≤F≤|F1+F2|
    4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
    注:
    (1)力(矢量)的合成与分解遵循平行四边形定则;
    (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
    (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
    (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
    (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算.
    四、动力学(运动和力)
    1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
    2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
    3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
    4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}
    5.超重:FN>G,失重:FNr}
    3.受迫振动频率特点:f=f驱动力
    4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
    5.机械波、横波、纵波〔见第二册P2〕
    6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
    7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
    8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
    9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
    10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
    注:
    (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
    (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
    (3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
    (4)干涉与衍射是波特有的;
    (5)振动图象与波动图象;
    (6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕.
    六、冲量与动量(物体的受力与动量的变化)
    1.动量:p=mv{p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
    3.冲量:I=Ft{I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
    4.动量定理:I=Δp或Ft=mvt–mvo{Δp:动量变化Δp=mvt–mvo,是矢量式}
    5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
    6.弹性碰撞:Δp=0;ΔEk=0{即系统的动量和动能均守恒}
    7.非弹性碰撞Δp=0;00
    (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
    (7)r0为分子处于平衡状态时,分子间的距离;
    (8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕.
    九、气体的性质
    1.气体的状态参量:
    温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
    热力学温度与摄氏温度关系:T=t+273{T:热力学温度(K),t:摄氏温度(℃)}
    体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
    压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
    2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
    3.理想气体的状态方程:p1V1/T1=p2V2/T2{PV/T=恒量,T为热力学温度(K)}
    注:
    (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
    (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K).
    十、电场
    1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
    2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
    3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
    4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}
    5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
    6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
    7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
    8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
    9.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
    10.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}
    11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)
    12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}