高三数学知识点公式大全


    总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,下面是小编给大家带来的高三数学知识点公式大全,以供大家参考!
    高三数学知识点公式大全
    锐角三角函数公式
    sinα=∠α的对边/斜边
    cosα=∠α的邻边/斜边
    tanα=∠α的对边/∠α的邻边
    cotα=∠α的邻边/∠α的对边
    倍角公式
    Sin2A=2SinA?CosA
    Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
    tan2A=(2tanA)/(1-tanA^2)
    (注:SinA^2是sinA的平方sin2(A))
    三倍角公式
    sin3α=4sinα·sin(π/3+α)sin(π/3-α)
    cos3α=4cosα·cos(π/3+α)cos(π/3-α)
    tan3a=tana·tan(π/3+a)·tan(π/3-a)
    三倍角公式推导
    sin3a
    =sin(2a+a)
    =sin2acosa+cos2asina
    辅助角公式
    Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
    sint=B/(A^2+B^2)^(1/2)
    cost=A/(A^2+B^2)^(1/2)
    tant=B/A
    Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
    降幂公式
    sin^2(α)=(1-cos(2α))/2=versin(2α)/2
    cos^2(α)=(1+cos(2α))/2=covers(2α)/2
    tan^2(α)=(1-cos(2α))/(1+cos(2α))
    推导公式
    tanα+cotα=2/sin2α
    tanα-cotα=-2cot2α
    1+cos2α=2cos^2α
    1-cos2α=2sin^2α
    1+sinα=(sinα/2+cosα/2)^2
    =2sina(1-sin2a)+(1-2sin2a)sina
    =3sina-4sin3a
    cos3a
    =cos(2a+a)
    =cos2acosa-sin2asina
    =(2cos2a-1)cosa-2(1-sin2a)cosa
    =4cos3a-3cosa
    sin3a=3sina-4sin3a
    =4sina(3/4-sin2a)
    =4sina[(√3/2)2-sin2a]
    =4sina(sin260°-sin2a)
    =4sina(sin60°+sina)(sin60°-sina)
    =4sina_2sin[(60+a)/2]cos[(60°-a)/2]_2sin[(60°-a)/2]cos[(60°-a)/2]
    =4sinasin(60°+a)sin(60°-a)
    cos3a=4cos3a-3cosa
    =4cosa(cos2a-3/4)
    =4cosa[cos2a-(√3/2)2]
    =4cosa(cos2a-cos230°)
    =4cosa(cosa+cos30°)(cosa-cos30°)
    =4cosa_2cos[(a+30°)/2]cos[(a-30°)/2]_{-2sin[(a+30°)/2]sin[(a-30°)/2]}
    =-4cosasin(a+30°)sin(a-30°)
    =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
    =-4cosacos(60°-a)[-cos(60°+a)]
    =4cosacos(60°-a)cos(60°+a)
    上述两式相比可得
    tan3a=tanatan(60°-a)tan(60°+a)
    半角公式
    tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
    cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
    sin^2(a/2)=(1-cos(a))/2
    cos^2(a/2)=(1+cos(a))/2
    tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
    三角和
    sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
    cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
    tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
    两角和差
    cos(α+β)=cosα·cosβ-sinα·sinβ
    cos(α-β)=cosα·cosβ+sinα·sinβ
    sin(α±β)=sinα·cosβ±cosα·sinβ
    tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
    tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
    和差化积
    sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
    sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
    cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
    cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
    tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
    tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
    积化和差
    sinαsinβ=[cos(α-β)-cos(α+β)]/2
    cosαcosβ=[cos(α+β)+cos(α-β)]/2
    sinαcosβ=[sin(α+β)+sin(α-β)]/2
    cosαsinβ=[sin(α+β)-sin(α-β)]/2
    诱导公式
    sin(-α)=-sinα
    cos(-α)=cosα
    tan(—a)=-tanα
    sin(π/2-α)=cosα
    cos(π/2-α)=sinα
    sin(π/2+α)=cosα
    cos(π/2+α)=-sinα
    sin(π-α)=sinα
    cos(π-α)=-cosα
    sin(π+α)=-sinα
    cos(π+α)=-cosα
    tanA=sinA/cosA
    tan(π/2+α)=-cotα
    tan(π/2-α)=cotα
    tan(π-α)=-tanα
    tan(π+α)=tanα
    诱导公式记背诀窍:奇变偶不变,符号看象限
    万能公式
    sinα=2tan(α/2)/[1+tan^(α/2)]
    cosα=[1-tan^(α/2)]/1+tan^(α/2)]
    tanα=2tan(α/2)/[1-tan^(α/2)]
    其它公式
    (1)(sinα)^2+(cosα)^2=1
    (2)1+(tanα)^2=(secα)^2
    (3)1+(cotα)^2=(cscα)^2
    证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
    (4)对于任意非直角三角形,总有
    tanA+tanB+tanC=tanAtanBtanC
    证:
    A+B=π-C
    tan(A+B)=tan(π-C)
    (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
    整理可得
    tanA+tanB+tanC=tanAtanBtanC
    得证
    同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立
    由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
    (5)cotAcotB+cotAcotC+cotBcotC=1
    (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
    (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
    (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
    (9)sinα+sin(α+2π/n)+sin(α+2π_2/n)+sin(α+2π_3/n)+……+sin[α+2π_(n-1)/n]=0
    cosα+cos(α+2π/n)+cos(α+2π_2/n)+cos(α+2π_3/n)+……+cos[α+2π_(n-1)/n]=0以及
    sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
    tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
    高三数学知识点归纳总结
    一个推导
    利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+…+a1qn-1,
    同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,
    两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).
    两个防范
    (1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.
    (2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.
    三种方法
    等比数列的判断方法有:
    (1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N_),则{an}是等比数列.
    (2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N_),则数列{an}是等比数列.
    (3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N_),则{an}是等比数列.
    注:前两种方法也可用来证明一个数列为等比数列.
    高三数学必考知识点总结
    1.不等式的定义
    在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
    2.比较两个实数的大小
    两个实数的大小是用实数的运算性质来定义的,
    有a-b>0?;a-b=0?;a-b<0?.
    另外,若b>0,则有>1?;=1?;<1?.
    概括为:作差法,作商法,中间量法等.
    3.不等式的性质
    (1)对称性:a>b?;
    (2)传递性:a>b,b>c?;
    (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
    (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
    (5)可乘方:a>b>0?(n∈N,n≥2);
    (6)可开方:a>b>0?(n∈N,n≥2).
    复习指导
    1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.
    2.“一种方法”待定系数法:求代数式的范围时,先用已知的`代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.
    3.“两条常用性质”
    (1)倒数性质:①a>b,ab>0?<;②a<0
    ③a>b>0,0;④0
    (2)若a>b>0,m>0,则
    ①真分数的性质:<;>(b-m>0);