有关初中数学知识点总结梳理

2022年7月20日18:37:00有关初中数学知识点总结梳理已关闭评论


    数学,是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。这次小编给大家整理了初中数学知识点总结梳理,供大家阅读参考。
    有关初中数学知识点总结梳理
    初中数学知识点总结梳理
    方程与方程组
    一元一次方程:
    ①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
    ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
    解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
    二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
    二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
    适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
    二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
    解二元一次方程组的方法:代入消元法/加减消元法。
    一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程。
    1一元二次方程的二次函数的关系
    大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了。
    2一元二次方程的解法
    大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解。
    (1)配方法
    利用配方,使方程变为完全平方公式,在用直接开平方法去求出解。
    (2)分解因式法
    提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解。
    (3)公式法
    这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a。
    3解一元二次方程的步骤:
    (1)配方法的步骤:
    先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。
    (2)分解因式法的步骤:
    把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。
    (3)公式法
    就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。
    4韦达定理
    利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a,也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。
    5一元一次方程根的情况
    利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:
    I当△>0时,一元二次方程有2个不相等的实数根;
    II当△=0时,一元二次方程有2个相同的实数根;
    III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)。
    不等式与不等式组
    不等式:
    ①用符号〉,=,〈号连接的式子叫不等式。
    ②不等式的两边都加上或减去同一个整式,不等号的方向不变。
    ③不等式的两边都乘以或者除以一个正数,不等号方向不变。
    ④不等式的两边都乘以或除以同一个负数,不等号方向相反。
    不等式的解集:
    ①能使不等式成立的未知数的值,叫做不等式的解。
    ②一个含有未知数的不等式的所有解,组成这个不等式的解集。
    ③求不等式解集的过程叫做解不等式。
    一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
    一元一次不等式组:
    ①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
    ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
    ③求不等式组解集的过程,叫做解不等式组。
    一元一次不等式的符号方向:
    在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
    在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C;
    在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C;
    在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A乘以C>B乘以C(C>0);
    在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A乘以C<b乘以c(c<0)< span="">。
    如果不等式乘以0,那么不等号改为等号,所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
    函数
    变量:
    因变量,自变量。
    在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
    一次函数:
    ①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。
    ②当B=0时,称Y是X的正比例函数。
    一次函数的图象:
    ①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
    数学考试拿高分的窍门
    一、对照法
    如何正确理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
    二、公式法
    运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
    三、比较法
    通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
    四、分类法
    根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。 分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。
    怎样才能学好数学
    1.打破沙锅问到底的执着和温故知新的毅力,被某个知识点或者某道题难住,就把它搁置,问题越来越多就积重难返了。
    2.不会的问题当即解决最好,解决的方法有查资料或者请教他人等;对已经解决的问题和重要知识点,要定期复习,复习时要思考有无更好的方法。
    3.学会一题多解,从各个方面来了解题目的含义,锻炼孩子的变式思维;要敢于创新,老师可在讲课过程中故意出错,让学生来思考,矫正,使学生处于主动思考的状态。